
Noname manuscript No.
(will be inserted by the editor)

A new approach for approximate implicitization of
parametric curves

Jinming Wu · Xiaolei Zhang

Received: 19 January 2013 / Revised: 30 June 2013/ Accepted: 07 July 2013

Abstract In this paper, we present a new approach to solve approximate im-
plicitization of parametric curves. The basic idea is to divide the normal para-
metric curve into several curve segments at three types of critical points and
then use multiquadric quasi-interpolation to approximate each curve segment.
Meanwhile, we interpolate two endpoints of each segment by using compactly
supported radial basis functions in order to maintain the continuity of the
adjacent curve segments. The resulting implicit curves possess certain shape
preserving and good approximation behaviors.
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1 Introduction

Shape representation based on parametric forms has been studied extensively,
and the use of parametric representations remains dominant in Computer
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Aided Geometry Design and Geometric Modeling. However, algebraic mod-
els have certain mathematical and computational advantages complementary
to the parametric forms, and they are receiving increased attention. Actually,
parametric curves/surfaces and implicit curves/surfaces are both important.
For example, with the parametric form, it is easy to generate points on a
general curve/surface and plot it. On the other hand, it is convenient to deter-
mine whether a point is on, inside, or outside a given solid with the implicit
treatments [1,2].

For a general parametric curve/surface, we usually cannot compute its ex-
act implicit form. Even though its exact implicit form can be computed, the
curve/surface implicitization always involves relatively complicated computa-
tion and the degree of the implicit curves/surfaces is high. Another difficulty
is that implicit curves/surfaces may have unexpected components and self-
intersections which lead to computational instability and topological incon-
sistency in geometric modeling. All these unsatisfied properties restrict the
applications of the exact implicitization in practical use.

Due to these reasons, finding approximate implicitization of parametric
curves/surfaces becomes a practical problem. In the past twenty years, many
scholars are studying on this issue. The earlier work on approximate im-
plicitization was done by Velho et al.[3], who presented an approximate im-
plicitization scheme from parametric surfaces to implicit surfaces based on
wavelet analysis. In 1999, Sederberg et al.[4] proposed a method to solve ap-
proximate implicitization by using monoid curves and surfaces, which was
made more available in Dokken’s work [5,6]. In 2004, Chen and Deng [7] pre-
sented the concept of interval implicitization of rational curves and developed
the corresponding optimization algorithm. In 2006, Li et al.[8] discussed the
approximate implicitization of planar parametric curves by using the piece-
wise quadratic Bézier spline curves with G1 continuity. Since the parametric
curves/surfaces discussed in these papers are rational, it is required to de-
sign different approaches to deal with approximate implicitization of arbitrary
parametric curves/surfaces. In 2007, Wang and Wu [9] discussed the approx-
imate implicitization of some regular parametric curves based on radial basis
function networks and multiquadric (MQ) quasi-interpolation. In 2008, Wu
and Wang [10] presented an algorithm to solve the approximate implicitiza-
tion of parametric surfaces based on multivariate interpolation with the use of
normal constraint points. Very recently, Zhang and Wu [11] proposed another
way to solve approximate implicitization of parametric curves by using cubic
algebraic splines.

Since the methods in papers [9,11] are carried out independently and each
method has their own unique advantages, we may combine their advantages
together and develop a simple algorithm. The basic idea is to divide the original
normal parametric curves into several curve segments at three types of critical
points and then use MQ quasi-interpolation operator to approximate each
curve segment. Meanwhile, we interpolate these separated points by using
compactly supported radial basis functions (CS-RBFs) in order to maintain
the continuity of the adjacent curve segments.
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Our proposed algorithm has the following advantages: Firstly, this is a great
and essential improvement of our previous work [9]. In fact, all the subsequent
numerical examples provided in this paper can not be tackled directly by the
method in [9]. Secondly, our proposed method is simple and easy to implement
compared with the cubic algebraic spline method in [11]. More importantly,
the resulting implicit curves have certain shape preserving.

2 Preliminaries

2.1 Radial basis function

A radial basis function (RBF) is a relatively simple multivariate function gener-
ated by a univariate function. Nowadays, the radial basis function has become
an effective tool for multivariate scattered data interpolation [12]-[15].

The process of RBF interpolation is as follows: For given scattered data
{Xj}N

i=1 ⊂ Rn and the corresponding function values {f(Xi)}N
i=1, we can

construct an interpolant of the form

s(X) =
N∑

j=1

λjφ(‖X −Xj‖), X = (x1, x2, · · · , xn), (1)

where ‖ · ‖ denotes the Euclidean norm, φ : R+ → R is a given RBF. The
coefficients λj can be determined by solving the linear system

s(Xi) =
N∑

j=1

λjφ(‖Xi −Xj‖) = fi, i = 1, · · · , N.

The positive definiteness of guarantees that the above interpolation prob-
lem possesses a unique solution. If φ has compact support, then the positive
definite linear system is sparse and reduces computational cost greatly. Thus,
we bypass this problem by restricting φ to have compact support.

CS-RBFs have only recently been constructed. Wu first constructed a broad
variety of CS-RBFs [16]. Very recently, Wendland constructed these functions
such that they possess the lowest degree among all CS-RBFs which are positive
definite for given space dimension and prescribed order of smoothness [17].
They are radial basis functions which are positive definite on Rd for a given
space dimension d, belong to a prescribed smoothness class, are compactly
supported and easy to evaluate.

We find this a useful property in practice and thus provide a good selection
of Wendland’s functions. Nowadays, CS-RBFs have become a popular tool for
multivariate interpolation of large scattered data, implicit surface reconstruc-
tion and so on [12].

In order to adapt the interpolation to scattered data of different densities,
it is necessary to be able to scale the support of φ. So from now on we assume
the radius α of support of φ is one and replace φ by

φα(·) = φ(·/α), for α > 0.
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2.2 MQ quasi-interpolation operator LD

The univariate multiquadric quasi-interpolation of a function f : [a, b] → R at
the scattered points

a = x0 < x1 < · · · < xn = b,

has the form

Lf(x) :=
n∑

i=0

f(xi)ψi(x),

where each ψi(x) is the linear combination of the MQ basis

ϕi(x) =
√

(x− xi)2 + c2

and c is a shape parameter.
In the summarized paper [18], Franke pointed out that MQ interpolation

was best in terms of timing, storage, accuracy, visual pleasantness of surface,
and ease of implementation. Although the MQ interpolation (with appended
constant) is always solvable, the resulting matrix from using MQ quickly be-
comes ill-conditioned as the number of points increases. Thus, the research
focus on the MQ quasi-interpolation. In the early 1992, Beaton and Powell [19]
proposed three kinds of univariate multiquadric quasi-interpolation schemes,
namely, LA, LB and LC , to approximate the function {f(x) : x ∈ [x0, xN ]}
from the space that is spanned by the multiquadrics and linear functions. Af-
terwards, Wu and Schaback [20] presented another quasi-interpolation formula
LD on [x0, xN ] without using the derivative values at the endpoints.

Theorem 1 [20] MQ quasi-interpolation operator LD preserves linear repro-
duction, monotonicity, convexity and variation-diminishing.

They proved it can have an O(h2| log h|) error only if at least the shape
parameter c = O(h). Meanwhile, how to select a good value for the parameter
c in multiquadric interpolation is well studied by Carlson and Foley [21].

2.3 Curve segment

In order to approximate the parametric curve efficiently, a basic idea is to
divide it into several segments. We introduce the following notations and def-
initions (for details, readers may refer [8]).

The parametric curve C(t) = {(x(t), y(t))| t ∈ [a, b]} is said to be a regular
curve if for any a ≤ t ≤ b, x′(t), y′(t), x′′(t), y′′(t) always exist.

A natural idea is to divide the regular parametric curve into several curve
segments possessing relatively good shape, separated by the following three
types of critical points.

– A point C(t0) is called a cusp point of parametric curve C(t) if x′(t0) =
y′(t0) = 0. A cusp point is usually a sharp point on the curve.
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– A point C(t0) is called an inflection point of C(t) if x′(t0)y′′(t0)−x′′(t0)y′(t0) =
0 and x′(t0) 6= 0. An inflection point of a curve is a point at which the con-
vexity of the curve changes.

– A point C(t0) is called a vertical point of C(t) if x′(t0) = 0 and y′(t0) 6= 0.

A parametric curve C(t) is called normal if it has a finite number of critical
points. It is clear that a rational parametric curve is always normal.

A curve segment C(t) = (x(t), y(t)), t ∈ [t1, t2] is said to be triangle convex
if the left tangent line and right tangent line meet at v12 and the line segment
p1p2(p1 = C(t1), p2 = C(t2)) and the curve segment C(t), t ∈ [t1, t2] form a
convex region inside the triangle [p1p2v12].

Find the vertical points, the cusp points, and the inflection points by
solving the following univariate equations: x′(t) = 0, x′(t) = y′(t) = 0 and
x′(t)y′′(t) − x′′(t)y′(t) = 0. Let the solutions be ti, i = 1, · · · , n − 1. We as-
sume that a = t0 < t1 < · · · < tn = b. Then, C(t) is a triangle convex segment
in [ti, ti+1], i = 0, · · · , n− 1.

Remark 1 The command Solve in Mathematica 6.0 is used to solve the uni-
variate equation directly, which can find all the real solutions with prescribed
accuracy. It is noted that the approximation behavior is not sensitive to the
accuracy of the solutions of these systems from the numerical experiments.

3 Approximate implicitization of a parametric curve

From now on, the normal parametric curve C(t) is divided into n triangle
convex segments C(t) = (x(t), y(t)), t ∈ [ti, ti+1], i = 0, 1, · · · , n − 1. Our
discussed problem can be addressed as

Problem 1 Given the curve segment C(t), t ∈ [ti, ti+1], the approximate
implicitization of this curve segment is to find an implicit curve segment such
that it not only possesses certain shape preserving but also passes through the
two endpoints C(ti) and C(ti+1).

It is pointed out that the certain shape preserving describes the following
four possible properties: monotonicity, convexity, smoothness and fairness [22].

We will explain our proposed algorithm in detail. It is primarily based on
MQ quasi-interpolation operator LD and multivariate scattered data interpo-
lation using CS-RBFs.

Firstly, a set of Ni sampling points is chosen, i.e.,

SP(i) =
{

xij
= x(tij

) : tij
∈ [ti, ti+1], j = 1, 2, · · · , Ni

}
.

We assume, if not specified, xi1 < xi2 < · · · < xiNi
. In fact, this is true if and

only if ti1 < ti2 < · · · < tiNi
or ti1 > ti2 > · · · > tiNi

. Otherwise, there exists
tk0 ∈ [ti, ti+1] such that x′(tk0) = 0 which is a contradiction.



6 Jinming Wu, Xiaolei Zhang

Secondly, the set of data
{

(x(tij
), y(tij

))
}Ni

j=1
is approximated by MQ

quasi-interpolation operator LDy(i)(x) as follows

(LDy)(i)(x) =
Ni∑

j=1

y(tij
)ψ(i)

j (x), (2)

where,

ψ
(i)
1 (x) =

1
2

+
ϕ

(i)
2 (x)− (x− xi1)

2(xi2 − xi1)
,

ψ
(i)
2 (x) =

ϕ
(i)
3 (x)− ϕ

(i)
2 (x)

2(xi3 − xi2)
− ϕ

(i)
2 (x)− (x− xi1)

2(xi2 − xi1)
,

ψ
(i)
j (x) =

ϕ
(i)
j+1(x)− ϕ

(i)
j (x)

2(xij+1 − xij )
− ϕ

(i)
j (x)− ϕ

(i)
j−1(x)

2(xij − xij−1)
, j = 3, · · · , Ni − 2,

ψ
(i)
Ni−1(x) =

(xiNi
− x)− ϕ

(i)
Ni−1(x)

2(xiNi
− xiNi−1)

− ϕ
(i)
Ni−1(x)− ϕ

(i)
Ni−2(x)

2(xiNi−1 − xiNi−2)
,

ψ
(i)
Ni

(x) =
1
2

+
ϕ

(i)
Ni−1(x)− (xiNi

− x)
2(xiNi

− xiNi−1)
,

ϕ
(i)
j (x) =

√
(x− xij )2 + c2

Obviously, (LDy)(i)(x) is nothing more than Wu-Schaback’s operator LD
which is restricted on [x(ti), x(ti+1)].

Thirdly, we define an error function e(i)(x, y) = y − (LDy)(i)(x) and com-
pute

e
(i)
l = e(i)(Xi), e(i)

r = e(i)(Xi+1),

where Xi = (x(ti), y(ti)) and Xi+1 = (x(ti+1), y(ti+1)).
Moreover, we construct the following interpolant

ε(i)(x, y) = λ
(i)
l φαli

(‖X −Xi‖) + λ(i)
r φαri

(‖X −Xi+1‖) (3)

satisfying the interpolation conditions

ε(i)(Xi) = e
(i)
l , ε(i)(Xi+1) = e(i)

r ,

where, φαli
(‖X − Xi‖) and φαri

(‖X − Xi+1‖) are two CS-RBFs with the
support of radius αli and αri , respectively.

Finally, we obtain a formula in the form:

y = (LDy)(i)(x) + ε(i)(x, y). (4)

If we set
F (i)(x, y) = y − (LDy)(i)(x)− ε(i)(x, y), (5)
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then
Ci =

{
(x, y)| F (i)(x, y) = 0, x ∈ [x(ti), x(ti+1)]

}
(6)

is our implicit curve segment. It is used to approximate the parametric curve
segment C(t), t ∈ [ti, ti+1].

It is easy to prove that

F (i)(Xi) = 0, F (i)(Xi+1) = 0.

The first term of the right-hand side of (4) is considered to be a base approx-
imation to the parametric curve segment. While, the second term represents
local modification in order to have the property of endpoint interpolation.

If we let

F (x, y) =





F (0)(x, y), (x, y) ∈ C0;
...

F (n−1)(x, y), (x, y) ∈ Cn−1;

(7)

then
C = {(x, y)| F (x, y) = 0} (8)

is our final implicit curve. It can approximate the parametric curve C(t), t ∈
[a, b]. Actually, F (x, y) is a piecewise and continuous function.

It is inevitable that two natural questions will arise. The first question is
how to select the set of sampling points on each parametric curve segment. We
find that the proposed algorithm is not sensitive to the number of the selected
sampling points. Meanwhile, relatively good approximation behavior can be
achieved when a small amount of sampling points are chosen uniformly. This
fact will be confirmed in the numerical examples presented later on. In sum,
we have a great freedom to select the number and positions of sampling points
and we do not discuss it detail in this paper. As to the adaptive sampling of
parametric curves, we recommend that the readers can refer the paper [23].

Another question is how to compute the two coefficients λ
(i)
l and λ

(i)
r . Since

the ε(i)(x, y) is considered to be the local detail in order to interpolate two
endpoints, it is not sensitive to the radius of CS-RBFs. Therefore, if we set
hi = ‖Xi − Xi+1‖ and assume αli , αri

≤ hi, then we have λ
(i)
l = e

(i)
l and

λ
(i)
r = e

(i)
r . The interpolation function can be simply computed in the form

ε(i)(x, y) = e
(i)
l φαli

(‖X −Xi‖) + e(i)
r φαri

(‖X −Xi+1‖). (9)

Remark 2 We use Command ContourPlot in Mathematica 6.0 directly to
plot the implicit curve segment Ci on [x(ti), x(ti+1)]. Certainly, other com-
ponents are not useful and should be deleted. We put together all the curve
segments {Ci}n−1

i=0 to obtain the final implicit curve C.

We now show how to estimate the approximation error between the para-
metric curve and its corresponding implicit curve. The distance from C(t), t ∈



8 Jinming Wu, Xiaolei Zhang

[ti, ti+1] to implicit curve Ci can be evaluated by the following approximation
error function [8]

e(F (i), t) =
F (i)(x(t), y(t))

[F (i)
x (x(t), y(t))2 + F

(i)
y (x(t), y(t))2]

1
2

.

Since it involves the partial derivative in denominator and is not convenient
in practical use, we replace e(F (i), t) with ẽ(F (i), t):

ẽ(F (i), t) = F (i)(x(t), y(t)). (10)

The approximation error between C(t), t ∈ [ti, ti+1] and Ci is defined as
follows

ẽ(F (i)) = max
ti≤t≤ti+1

|ẽ(F (i), t)|. (11)

In practice, we discrete t as tij = ti + j
Mi

(ti+1 − ti), j = 0, · · · ,Mi for a
proper value of Mi, say Mi = 100, and evaluate the approximation error as
max

0≤j≤Mi

|ẽ(F (i), tij
)|.

Therefore, the approximation error between C(t), t ∈ [a, b] and C is defined

ẽ(F ) = max
0≤i≤n−1

ẽ(F (i)). (12)

4 Main algorithm

With the above preparations, the algorithm of approximate implicitization of
a normal parametric curve is outlined as follows.

Algorithm 2 Approximate implicitization of a normal parametric curve

Input A normal parametric curve C(t) = (x(t), y(t)), a ≤ t ≤ b, and a small
threshold δ.

Output An implicit curve C = {(x, y)| F (x, y) = 0} satisfying each E(ẽ(F )) ≤
δ.

Step 1 Divide the normal parametric curve into several triangle convex seg-
ments and let a = t0 < t1 < · · · < tn−1 < tn = b be the parametric values
corresponding to the critical points and two endpoints. Set i = 0.

Step 2 Choose sampling points on C(t), t ∈ [ti, ti+1] and construct the implicit
curve Ci = {(x, y)| F (i)(x, y) = 0} on [ti, ti+1], where F (i)(x, y) is defined
by (5).

Step 3 . If E(ẽ(F (i))) ≤ δ, then this procedure terminates output F (i)(x, y).
Otherwise, if E(ẽ(F (i))) > δ, then we subdivide the interval [ti, ti+1] at
midpoint and go to Step 2 on each subinterval.

Step 4 . Set i = i+1. If i ≤ n−1 then go to Step 2; Otherwise, stop and output
the implicit curve C = {(x, y)| F (x, y) = 0}, where F (x, y) is defined by
(7).

The following theorem is a direct consequence from the properties of LD
and interpolation at the separated points.
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Theorem 3 With the above Algorithm 2, one obtains a global continuous
implicit curve which keeps the cusp points and possesses certain shape preserv-
ing of the original parametric curve .

5 Numerical examples

In this section, some numerical examples are provided to illustrate the pro-
posed method is flexible and effective.

Example 1 Consider the following parametric curves from [8,11]

C1(t) = (5t3 + 2t2, t4 − 3t3 + 2t2),
C2(t) = (3t6 + t5 − 2t4 + 38t3 − 5t2 − 14t, t6 − 12t5 − 2t4 + 2t3 − 7t2 + 13t),

C3(t) = (
5t5 − 16t4 + 10t3 + 4t2

0.1t3 + 0.1t2 − 2t + 12.5
,

t5 + t4 + 2t3 − 16t2

0.1t3 + 0.1t2 − 2t + 12.5
),

C4(t) = (sin(2t) + ln(5t4 + 2) + 3t2, 3et2−1 + cos(t/5) + 2t7).

The parameters for curves of C1(t), C2(t), C3(t) and C4(t) take values in
[−1, 1], [−1, 1], [−1, 2.25], and [−1, 1]. The original parametric curves denoted
by black lines are shown in the left of Fig.1–Fig.4.

Their implicit curves together with the separated points, denoted by red
lines and thick dots, are shown in the right of Fig.1-Fig.4. Moreover, the max-
imum errors and variances which are evaluated at arbitrary 100 testing points
are listed in Tables 1, 2, 3 and 4, respectively.
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Fig. 1 C1(t) and its approximate implicit curve

Table 1 Error analysis of curve C1(t)

Range of t (-1,-0.27) (-0.27,0) (0,1)
Approximation error 0.054 0.053 0.0047

Variance 1.89× 10−4 3.49× 10−4 4.71× 10−3
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Fig. 2 C2(t) and its approximate implicit curve

Table 2 Error analysis of curve C2(t)

Range of t (-1,-0.31) (-0.31,0.12) (0.12,0.4) (0.4,1)
Approximation error 0.017 0.019 0.052 0.11

Variance 7.24× 10−4 2.01× 10−3 1.46× 10−4 4.85× 10−4
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Fig. 3 C3(t) and its approximate implicit curve

Table 3 Error analysis of curve C3(t)

Range of t (-1,-0.19) (-0.19,0) (0,0.97) (0.97,1.79) (1.79,2.25)
Approximation error 0.041 0.017 0.069 0.055 0.050

Variance 1.98× 10−4 3.47× 10−5 3.77× 10−4 1.78× 10−4 1.32× 10−4

Table 4 Error analysis of curve C4(t)

Range of t (-1,-0.26) (-0.26,1)
Approximation error 0.017 0.029

Variance 1.54× 10−5 3.15× 10−5

In fact, we can compute the exact implicit form of the first three curves with
a Gröbner bases method. However, the expressions for them are polynomials
of high degree with large numbers of coefficients. Moreover, curve C4(t) does
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Fig. 4 C4(t) and its approximate implicit curve

not have an exact implicit form. Thus, it is convinced that the approximate
implicitization of parametric curves is practical and useful.

6 Conclusion

We describe an algorithm to find an approximate implicitization of a given nor-
mal parametric curve. With the proposed algorithm, we obtain a continuous
implicit curve which possesses certain good shape preserving. The proposed
method is simple and easy to implement compared to the other existing meth-
ods.

However, the proposed algorithm is hard to be generalized to tackle the case
of parametric surfaces directly. Our ultimate target is to discuss approximate
implicitization of the parametric surfaces. The essential generalization remains
to be our future work.
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