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1. Introduction

In this paper, we will study the following horizontal linear com-

plementarity problem(HLCP): finding a vector x ∈ Rn such that

Mx − Ny + q = 0, x ≥ 0, y ≥ 0 and xT y = 0, where M, N are

n × n matrices, q ∈ Rn is a vector. If N = E, where E is iden-

tity matrix, the horizontal linear complementarity problem reduces

to the linear complementarity problem, that is, to find x ≥ 0, such

that y = Mx + q ≥ 0 and xT y = 0.

The horizontal linear complementarity problem(HLCP) is a class

of impotent complementarity problems. There are many methods to

*This research is supported by The NNSF (10771020) of China and Jilin
Natural Science Foundation(201215128,20101597).
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solve horizontal linear complementarity problem, Roman et al. [1]

have generalized the ω-properties. zhang et al. [2] have given the

s-type error bound for the horizontal linear complementarity prob-

lem. Frede et al. [3] have introduced the infeasible path following

algorithm for the horizontal complementarity problem. Monteiro

et al. [4] have studied the monotone horizontal linear complemen-

tarity problem. Stoer [5] has given high order long-step method

for monotone horizontal linear complementarity problem. Liu et

al. [6] and Filiz et al. [7] have given the iteration complexity of a

higher order corrector-predictor interior-point method for the suffi-

cient horizontal linear complementarity problem. However, all those

methods as mentioned above need the condition that the solution set

is nonempty and few attempts have been done on using homotopy

method to solve the horizontal linear complementarity problem. The

objective of this paper is to construct a homotopy equation for the

horizontal linear complementarity problem, give the solvability of

the horizontal linear complementarity problem with P (τ, α, β) ma-

trix pair.

Throughout the paper, all vectors are column vectors, the vector

(xT , yT )T ∈ Rn×Rn is usually abbreviated by (x, y) and superscript

T denotes the transpose of a vector. For any x ∈ Rn, we denote by

‖x‖ the Euclidean norm of x, by xi the ith component of x, we

denote by Rn
+ (respectively, Rn

++) the space of n−dimensional real

vectors with nonnegative components(respectively, positive compo-

nents). When x ∈ Rn
+(respectively, Rn

++), we also write x ≥ 0(respectively,

x > 0) for simplicity. H ′(ω) denotes the Jacobian matrix of the

H(ω). Let L = {1, 2, · · · , n}.
The organization of the paper is as follows. In section 2, we intro-

duce some definitions and some basic preliminaries for the horizontal

linear complementarity problem (HLCP) that will be utilized in the

paper. In Section 3, we construct a homotopy equation for the HLCP

and obtain the solvability of this problem. Some numerical examples

are given to show the effectiveness and feasibility of this method.
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2. Preliminaries and Definitions

We first introduce three lemmas from differential topology which

will be used in the following discussions.

Let U ⊆ Rn be an open set and let φ : U → Rp be a Cα (α >

max{0, n− p}) mapping. We say that y ∈ Rp is a regular value for

φ, if

Range

[
∂φ(x)

∂x

]
= Rp, ∀x ∈ φ−1(y).

Lemma 2.1. (see[9]) (Parameterized Sard Theorem on smooth man-

ifold) Let V ⊂ Rn, U ⊂ Rm be open sets, and let φ : V × U → Rk

be a Cα mapping, where α > max{0,m − k}. If 0 ∈ Rk is a reg-

ular value of φ, then for almost all a ∈ V, 0 is a regular value of

φa = φ(a, ·).

Lemma 2.2. (see[10]) (The inverse image theorem) Let φ : U ⊂
Rn → Rp be a Cα (α > max{0, n − p}) mapping. If 0 ∈ Rp is a

regular value of φ, then φ−1(0) consists of some (n− p)-dimensional

Cα manifolds.

Lemma 2.3. (see[10]) (Classification theorem of one-dimensional

smooth manifold) One-dimensional smooth manifold is diffeomorphic

to a unit circle or a unit interval.

The following matrix pair has been extensively used in the litera-

ture to ensure the solvability of the HLCP.

Definition 2.4. (see[2,5])The pair(M, N) is said P pair, if for any

u, v ∈ Rn, u 6= 0, Mu−Nv = 0 implies

uT v ≥ 0.

This matrix pair is called the X−column monotonicity with re-

spect to Rn
+ by Jianzhong Zhang, Naihua Xiu in [2]. This matrix

pair is also called monotone by Josef Stoer in [5].
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Definition 2.5. (see[6,7]) The pair(M,N) is said P∗(κ) pair, if for

some scalar κ ≥ 0, Mu−Nv = 0 implies

(1 + 4κ)
∑

i∈I+(u,v)

uivi +
∑

i∈I−(u,v)

uivi ≥ 0

for any u, v ∈ Rn, where

I+(u, v) = {i|uivi > 0}, I−(u, v) = {i|uivi ≤ 0}.
We say the horizontal linear complementarity problem is a P∗(κ)

HLCP, if the pair (M, N) is a P∗(κ) pair. In the case N = E, (M, E)

is a P∗(κ) pair if and only if M is a P∗(κ) matrix, that is

(1 + 4κ)
∑

i∈I+(u)

ui(Mu)i +
∑

i∈I−(u)

ui(Mu)i ≥ 0,

for u ∈ Rn, I+(u) = {i ∈ L|ui(Mu)i > 0}, I−(u) = {i ∈ L|ui(Mu)i ≤
0}. If (M, N) belongs to the class P∗ =

⋃
κ≥0

P∗(κ), then we say

(M, N) is a P∗ pair and HLCP is said a P∗ HLCP.

Example 2.1 Let

M =




10 −6 0

−5 −3 0

0 0 1


 , N =




2 2 0

1 −1 0

0 0 1


 ,

hence, we have

Mu = Nv ⇔





10u1 − 6u2 = 2v1 + 2v2

−5u1 − 3u2 = v1 − v2

u3 = v3

and

u1v1 = −3u1u2, u2v2 = 5u1u2, u3v3 = u2
3,

(M, N) is a P∗ pair with τ = 1, but (M, N) is not a P pair. In

fact, let (0, 3, 0)T , we have (v1, v2, v3)
T = (−9, 0, 0)T , max

1≤i≤3
uivi = 0.

We combine the idea of the reference [8] and definition 2.5 to give

the following definitions 2.6 and 2.7.
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Definition 2.6. The pair(M, N) is said P (τ, α, β) pair, if for some

scalar τ ≥ 0, α > 0, 0 ≤ β < 1, Mu−Nv = 0 implies

(1 + τ)
∑

i∈I+(u,v)

uivi +
∑

i∈I−(u,v)

uivi ≥ −α‖u‖β

for any u, v ∈ Rn, where

I+(u, v) = {i|Mu−Nv = 0, uivi > 0},
I−(u, v) = {i|Mu−Nv = 0, uivi ≤ 0}.

Clearly, a P∗−pair must be a P (τ, α, β) pair.

Lemma 2.7. If the pair (M, N) is a P -pair, then (M, N) is a P∗
pair.

Proof. Let B = {(u, v) ∈ Rn×n|‖(u, v)‖ = 1}, if the pair (M, N) is

a P -pair, from Definition 2.4, max
1≤i≤n

uivi > 0 for any u, v satisfying

Mu−Nv = 0. We define a multivariate function:

ϕ(u, v) : Rn×n → R,ϕ(u, v) =

n∑
i=1

uivi

∑
i∈I+(u,v)

uivi

(
∑

i∈I+(u,v)

uivi > 0),

hence, ϕ(u, v) is a continuous function, for any (u, v) 6= 0, there

exists a constant τ ≥ 0, such that, for any (u, v) ∈ B,

−τ ≤ |ϕ(u, v)| ≤ τ,

i.e. for any (u, v) ∈ B,
n∑

i=1

uivi ≥ −τ
∑

i∈I+(u,v)

uivi.

Rearranging the terms

(1 + τ)
∑

i∈I+(u,v)

uivi +
∑

i∈I−(u,v)

uivi ≥ 0.

For any Mu − Nv = 0, 0 6= (u, v) ∈ Rn×n, let ũ = u
‖(u,v)‖ , ṽ =

v
‖(u,v)‖ ,(ũ, ṽ) ∈ B, so we have

(1 + τ)
∑

i∈I+(ũ,ṽ)

ũiṽi +
∑

i∈I−(ũ,ṽ)

ũiṽi ≥ 0.
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Multiplying above inequality both side by ‖(u, v)‖2, one has

(1 + τ)
∑

i∈I+(ũ,ṽ)

ũiṽi‖(u, v)‖2 +
∑

i∈I−(ũ,ṽ)

ũiṽi‖(u, v)‖2 ≥ 0.

Noticing

I+(ũ, ṽ) = I+(u, v), I−(ũ, ṽ) = I−(u, v),

hence, we have

(1 + τ)
∑

i∈I+(u,v)

uivi +
∑

i∈I−(u,v)

uivi ≥ 0.

¤

Definition 2.8. A matrix M is called a P (τ, α, β) matrix, if for any

x ∈ Rn, there exists positive scalars τ ≥ 0, α > 0, 0 ≤ β ≤ 1, such

that

(1 + τ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ −α‖x‖β,

where I+(x) = {i|xi(Mx)i > 0}, I−(x) = {i|xi(Mx)i ≤ 0}.

Remark 2.9. If N is nonsingular, the pair (M,N) is a P (τ, α, β) pair

if and only if N−1M is a P (τ, α, β) matrix.

We make the following assumptions for the horizontal linear com-

plementarity problem:

H1 There exists x̄ > 0, ȳ > 0 such that Mx̄−Nȳ + q = 0;

H2 The pair (M, N) is full row rank, without loss of generality,

we assume that N is invertible.

3. Main Results

For any x(0) ∈ Rn
++, y(0) ∈ Rn

++, let

ω = (x, y), X = diag(x) =




x1 0 · · · 0

0 x2 · · · 0

· · · · · · · · · · · ·
0 0 · · · xn


 .
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We construct a homotopy equation as follows:

(1) H(ω, ω(0), µ) =

(
(1− µ)(Mx + q)−Ny + µNy(0)

Xy − µX(0)y(0)

)
= 0.

Where ω = (x, y), ω(0) = (x(0), y(0)).

When µ = 1, equation (1) becomes
(

N(−y + y(0))

Xy −X(0)y(0)

)
= 0

and it has a unique solution. When µ = 0, equation (1) becomes
(

Mx−Ny + q

Xy

)
= 0.

Obviously, H(ω(0), ω(0), 1) = 0. For given ω(0) ∈ Rn
++×Rn

++, we also

write H(ω, ω(0), µ) in (1) as Hω(0)(ω, µ). Let

H−1
ω(0)(0) = {(ω, µ) ∈ Rn

+ ×Rn
+ × (0, 1] | H(ω, ω(0), µ) = 0}.

Lemma 3.1. If H1, H2 hold, then for almost all ω(0) ∈ Rn
++ ×

Rn
++, 0 is a regular value of H. The homotopy equation (1) generates

a smooth curve Γω(0) starting from (x(0), y(0), 1).

Proof. We use H ′(ω, ω(0), µ) to represent the Jacobian matrix of H.

Then

H ′(ω, ω(0), µ) =

(
∂H

∂ω
,

∂H

∂ω(0)
,
∂H

∂µ

)
,

For ω(0) ∈ Rn
++ ×Rn

++, we have

∂H

∂ω(0)
=

(
0 µN

−µdiag(y(0)) −µX(0)

)
,

where E is the identity matrix, then by H2 we have

det

(
∂H

∂ω(0)

)
= (−1)2nµ2n det(N)

n∏
i=1

y
(0)
i 6= 0, (µ ∈ (0, 1]).

Therefore, H ′(ω, ω(0), µ) is a full row rank matrix. By Lemma 2.1,

we know that 0 is a regular value of H(ω, ω(0), µ) and by Lemma 2.2,

H−1
ω(0)(0) consists of some smooth curves. The equation H(ω(0), ω(0), 1) =
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0 implies that there exists a smooth curve Γω(0) starting from (ω(0), 1).

¤

Lemma 3.2. For a given ω(0) ∈ Rn
++ ×Rn

++, if 0 is a regular value

of H and the pair (M,N) is a P (τ, α, β) pair, then Γω(0) is a bounded

curve in Rn
+ ×Rn

+ × (0, 1].

Proof. From (1), it is easy to see that Γω(0) ⊂ Rn
+ × Rn

+ × (0, 1]. If

Γω(0) is an unbounded curve, then there exists a sequence of points

(x(k), y(k), µk) ∈ Γω(0) , such that ‖(x(k), y(k), µk)‖ → ∞ as k →∞. If

‖x(k)‖ → ∞, from equation (1), we have

(2) x
(k)
i y

(k)
i − µkx

(0)
i y

(0)
i = 0, i ∈ L.

It follows immediately from (2) that x
(k)
i > 0, y

(k)
i > 0, i ∈ L .

By the first equality of the homotopy equation (1), we have

(3) −Ny(k) + (1− µk)(Mx(k) + q) + µkNy(0) = 0.

By assumption H1, one has

(1− µk)(−Nȳ + Mx̄ + q) = 0.

Combining (3) and above equation, we have

(4) N(y(k) − (1− µk)ȳ − µky
(0))− (1− µk)M(x(k) − x̄) = 0.

Let

u(k) = x(k) − x̄, v(k) =
1

1− µk

(y(k) − (1− µk)ȳ − µky
(0)),

then by (4), we have

Mu(k) −Nv(k) = 0,

u
(k)
i v

(k)
i =

1

1− µk

(x
(k)
i − x̄i)[y

(k)
i − (1− µk)ȳi − µky

(0)
i ]

and

(5)

(x
(k)
i − x̄i)[y

(k)
i − (1− µk)ȳi − µky

(0)
i ]

= µkx
(0)
i y

(0)
i − [(1− µk)ȳi + µky

(0)
i ]x

(k)
i

−x̄iy
(k)
i + x̄i[(1− µk)ȳi + µky

(0)
i ].
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It follows from (5) that, for any i ∈ B = {i|x(k)
i →∞}, one has

(6) (x
(k)
i − x̄i)[y

(k)
i − (1− µk)ȳi − µky

(0)
i ] → −∞,

as i /∈ B,

(7)

(x
(k)
i − x̄i)[y

(k)
i − (1− µk)ȳi − µky

(0)
i ]

≤ µkx
(0)
i y

(0)
i + x̄i[(1− µk)ȳi + µky

(0)
i ]

≤ x
(0)
i y

(0)
i + x̄i(ȳi + y

(0)
i ).

There exists a subsequence of {x(k)}, also denoted by {x(k)}, such

that, there exists some index s and p, for all sufficiently large k, one

has

u(k)
s = x(k)

s − x̄s = max
1≤i≤n

(x
(k)
i − x̄i) = max

1≤i≤n
u

(k)
i ,

u(k)
p v(k)

p = max
1≤i≤n

u
(k)
i v

(k)
i = max

1≤i≤n

1

1− µk

(x
(k)
i −x̄i)[y

(k)
i −(1−µk)ȳi−µky

(0)
i ].

Combined (6) and (7) and (M, N) is a P (τ, α, β) pair, for sufficiently

large k, we have

u
(k)
s v

(k)
s ≥ min

1≤i≤n

1
1−µk

(x
(k)
i − x̄i)[y

(k)
i − (1− µk)ȳi − µky

(0)
i ]

≥ −τ 1
1−µk

max
1≤i≤n

(x
(k)
i − x̄i)[y

(k)
i − (1− µk)ȳi − µky

(0)
i ]− α‖u(k)‖β

≥ −τ 1
1−µk

[x
(0)
p y

(0)
p + x̄p(ȳp + y

(0)
p )]− α‖x(k) − x̄‖β.

So we have

v
(k)
s ≥ −τ

u
(k)
p v

(k)
p

u
(k)
s

− α‖u(k)‖β

u
(k)
s

≥ − τ 1
1−µk

[x
(0)
p y

(0)
p +x̄p(ȳp+y

(0)
p )]

x
(k)
s −x̄s

− α‖x(k)−x̄‖β

x
(k)
s −x̄s

.

Multiplying above inequality both side by 1− µk and noticing

v(k) =
1

1− µk

(y(k) − (1− µk)ȳ − µky
(0)),
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we have

(8)

y
(k)
s − (1− µk)ȳs − µky

(0)
s ≥ −τ

x
(0)
p y

(0)
p +x̄p(ȳp+y

(0)
p )

x
(k)
s −x̄s

− α(1− µk)
‖x(k)−x̄‖β

x
(k)
s −x̄s

,

Because

‖x(k) − x(0)‖β

x
(k)
s − x

(0)
s

= [
‖x(k) − x(0)‖2

(x
(k)
s − x

(0)
s )2/β

]β/2 = [

n∑
i=1

(x
(k)
i − x

(0)
i )2

(x
(k)
s − x

(0)
s )2/β

]β/2

= [

n∑
i=1

(x
(k)
i − x

(0)
i )2

(x
(k)
s − x

(0)
s )2

]β/2 1

(x
(k)
s − x

(0)
s )1−β

≤ nβ/2

(x
(k)
s − x

(0)
s )1−β

,

hence, lim
k→∞

‖x(k)−x(0)‖β

x
(k)
s −x

(0)
s

= 0, we take the limit in both sides of (8), the

left-hand side is less then zero, the right-hand side is equal to zero,

it is impossible. Thus, {x(k)} is a bounded sequence. From the first

equation of (1) and H2, it is easy to see that {y(k)} is a bounded

sequence too. ¤

Corollary 3.3. For a given ω(0) ∈ Rn
++ × Rn

++, if 0 is a regular

value of H and the pair (M, N) is a P∗ pair, then Γω(0) is a bounded

curve in Rn
+ ×Rn

+ × (0, 1].

Corollary 3.4. For a given ω(0) ∈ Rn
++ × Rn

++, if 0 is a regular

value of H and the pair (M, N) is a P pair, then Γω(0) is a bounded

curve in Rn
+ ×Rn

+ × (0, 1].

Theorem 3.5. Let H be defined by (1), the pair (M, N) is a

P (τ, α, β) pair, then for almost all ω(0) ∈ Rn
++ × Rn

++, the zero-

point set H−1
ω(0)(0) of homotopy map (1) contains a smooth curve

Γω(0), which starts from (ω(0), 1). As µ → 0, the limit point is

(x(∗), y(∗), 0) of Γω(0) and (x(∗), y(∗)) ∈ Rn
+ × Rn

+ is a solution of the

problem (HLCP).

Proof. By Lemmas 3.1 and 3.2, we know that Γω(0) is a bounded

smooth curve. Lemma 2.3 thus implies that Γω(0) is diffeomorphic
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to a unit circle or a unit interval (0, 1]. Notice that

∂H

∂ω µ = 1

ω = ω(0)

=

(
0 −N

Y (0) X(0)

)

is nonsingular. That means that Γω(0) is not diffeomorphic to a unit

circle. Therefore, it is diffeomorphic to the unit interval (0, 1]. Let

(ω(∗), µ∗) be a limit point of Γω(0) . Only the following four cases are

possible:

(1) µ∗ ∈ [0, 1], ‖(x(∗), y(∗))‖ → ∞;

(2) µ∗ ∈ (0, 1), ‖(x(∗), y(∗))‖ < ∞, there exists i ∈ L, such that

x
(∗)
i = 0,or y

(∗)
i = 0;

(3) µ∗ = 1, ‖(x(∗), y(∗))‖ < ∞;

(4) µ∗ = 0, ‖(x(∗), y(∗))‖ < ∞.

Lemma 3.2 implies that case (1) is impossible. The equation H(ω(0), ω(0), 1) =

0 has only one solution (ω(0), 1) ∈ Rn
++ ×Rn

++ × (0, 1], which means

that case (3) is impossible. If case (2) holds, then y
(∗)
i = 0 and

µ∗ ∈ (0, 1), that results in x
(∗)
i = ∞, which is impossible. Thus, case

(2) does not hold. So only case (4) holds. ¤

From Theorem 3.5, we know that for almost all ω(0) ∈ Rn
++×Rn

++,

the homotopy equation (1) implicitly defines a smooth curve Γω(0) ,

which we call the homotopy path. Let s denote the arc length of

Γω(0) , we can parameterize Γω(0) with respect to s in the form of

following

(9)
H(ω(s), µ(s)) = 0,

ω(0) = ω(0), µ(0) = 1.

Differentiating the first equation of (9) yields:

Theorem 3.6. The homotopy path Γω(0) is determined by the fol-

lowing system of ordinary differential equations with the given initial
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values

(10)

H ′
ω(0)(ω, µ)

(
ω̇(s)

µ̇(s)

)
= 0,

‖(ω̇(s), µ̇(s))‖ = 1,

ω(0) = ω(0), µ(0) = 1, µ̇(0) < 0,

and the ω-component of (ω(s(∗)), µ(s(∗))), for µ(s(∗)) = 0 is a solution

of (HLCP).

We discuss how to trace numerically homotopy path Γω(0) . A

standard procedure is the predictor-corrector method which used

an explicit difference scheme for solving numerically (10) to give a

predictor point and then uses a locally convergent iterative method

for solving the nonlinear system of equation (9) to give a correc-

tor point. A simple predictor-corrector procedure algorithm can be

found in [11].

We give the following proposition to obtain the positive direction

of the predictor-corrector algorithm in [11].

Theorem 3.7. If Γω(0) is smooth, then the positive direction η(0) at

the initial point ω(0) satisfies

sign det

(
H ′

ω(0)(ω
(0), 1)

η(0)T

)
= (−1)2n+1sign det(N).

Proof. From

H ′
ω(0)(ω, µ) =

(
(1− µ)M −N −(Mx + q) + Ny(0)

Y X −X(0)y(0)

)
,

where Y = diag(y). Let

ω = ω(0), µ = 1,

we obtain

H ′
ω(0)(ω

(0), 1) =

(
0 −N −(Mx(0) + q) + Ny(0)

Y 0 X(0) −X(0)y(0)

)

=
(

M1 M2

)
,
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where

M1 ∈ R2n×2n,M2 ∈ R2n×1.

The tangent vector ξ(0) of Γω(0) at (ω(0), 1) satisfies

(
M1 M2

) (
ξ0
1

ξ0
2

)
= 0,

where ξ0
1 ∈ R2n, ξ0

2 ∈ R and ξ(0) =

(
ξ

(0)
1

ξ
(0)
2

)
.

By simple computation, we have ξ0
1 = −M−1

1 M2ξ
(0)
2 , so we have

det

(
H ′

ω(0)(ω
(0), 1)

(ξ0)T

)
= det

(
M1 M2

ξ
(0)
1 ξ

(0)
2

)

= det

(
M1 M2

−MT
2 M−T

1 1

)
ξ

(0)
2

= det

(
M1 M2

0 1 + MT
2 M−T

1 M−1
1 M2

)
ξ

(0)
2

= det(M1)ξ
(0)
2 (1 + MT

2 M−T
1 M−1

1 M2).

By the definition of M1, we have

det(M1) = det

(
0 −N

Y (0) X(0)

)
= (−1)2n det(N)

n∏
i=1

y
(0)
i .

Hence,

det

(
H ′

ω(0)(ω
(0), 1)

(ξ0)T

)

= (−1)2nsign det(N)
n∏

i=1

y
(0)
i ξ

(0)
2 (1 + MT

2 M−T
1 M−1

1 M2),
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so we give

sign det

(
H ′

ω(0)(ω
(0), 1)

ξ(0)T

)
= (−1)2n+1sign det(N).

¤

We give some examples to show that the method developed is

feasible and effective.

Example 3.1

N =




1 2 2

2 5 6

2 6 9


 ,M =




7 1 0

17 3 0

20 4 0


, q =



−1

−1

1




T

,

Mu−Nv = 0 ⇔





v1 = u1 − u2

v2 = u2 + 3u1

v3 = 0

Thus, the pair (M,N) is a P∗-pair with τ = 3.

x
(0)
1 x

(0)
2 x

(0)
3 y

(0)
1 y

(0)
2 y

(0)
3 µ0

1 1 1 1 1 1 1

x
(∗)
1 x

(∗)
2 x

(∗)
3 y

(∗)
1 y

(∗)
2 y

(∗)
3 µ∗

1.0000 0.0000 0.0001 0.0001 2.0001 1.0000 0.0001
Table 1. Results of example 3.1

Example 3.2

N =




1 2 2

2 5 6

2 6 9


, M =




−6 −2 −2

−15 −4 −6

−18 −4 −9


, q =




20

50

62


,

Mu−Nv = 0 ⇔





v1 = −2u2

v2 = −3u1

v3 = −u3

Thus, the pair (M,N) is not a P∗-pair. Indeed, let u = (1 1 1)T ,

then v = (−2 − 3 − 1)T .
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x
(0)
1 x

(0)
2 x

(0)
3 y

(0)
1 y

(0)
2 y

(0)
3 µ0

1 1 1 1 1 1 1

x
(∗)
1 x

(∗)
2 x

(∗)
3 y

(∗)
1 y

(∗)
2 y

(∗)
3 µ∗

0.0000 0.0000 0.0000 3.9997 5.9994 1.9999 0.0001
Table 2. Results of example 3.2

Example 3.3

N =




1 2 3 4

0 1 2 3

0 0 1 2

0 0 0 1


, M =




−6 −23 12 −13

−5 −16 8 −6

−3 −11 7 −3

−2 −4 3 1


, q =




70

44

23

8


,

Mu−Nv = 0 ⇔





v1 = u1 − 2u2 + 3u3 − 4u4

v2 = −u1 + 2u2 − 3u3 + u4

v3 = u1 − 3u2 + u3 − 5u4

v4 = −2u1 − 4u2 + 3u3 + u4

Thus, the pair (M,N) is not a P∗-pair. Indeed, let u = (1 1 1 1)T ,

then v = (−2 − 1 − 6 − 2)T .

x
(0)
1 x

(0)
2 x

(0)
3 x

(0)
4 y

(0)
1 y

(0)
2 y

(0)
3 y

(0)
4 µ0

1 1 1 1 1 1 1 1 1

x
(∗)
1 x

(∗)
2 x

(∗)
3 x

(∗)
4 y

(∗)
1 y

(∗)
2 y

(∗)
3 y

(∗)
4 µ∗

0.0000 0.0000 0.0000 0.0000 4.9996 5.9995 6.9993 7.9993 0.0001
Table 3. Results of example 3.3
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